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Obs : There is a One-to-one correspondence
-
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Ever: Determine the delay of the system.
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-
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2 Why are we doing any of this ?

Why not just use FFrs ?

A: DWTs have a "nice" fregracy-band
decomposition.

Recall :
- x cns -DD-X(2n] = y Cry

Yeir =- (xei + X(i)
Suppose we have a discrete approx a ca
With DTFT
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Fregusay-Band Decomposition of the DWT
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&bs : Wavelet spaces are(approximately)
bandpass subspaces.

Obs : We have a logarithmic (base 2)-
-

set of band widths.

Remark : The logarithmic Frequency decoup.
-

is similar to the acture decoup
.

in musical scales and is related

to the response characteristics

of the human ear
.
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Obs:High-frequency information is captured
in shortfire instants·
-

· Low-frequency information is captured
in Long fire instarts.
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: All wallet ceets will be zero

except at the jumps.
-

& What about the scaling officients ?

1: Only store e number lavage of signal) .

theproperty: ( 4H) dt = 0 Conevarishiyor



Remark : Real-life signals are approximately-

piecewise polynomial
-

! I

↓

2: Can we have higher-order warlets ?
Yes:

At Danbechies , symmlet , splice wat, exc.

&F: A wavelet 4) is said to have

-vanishing metf if it satisfies

(P+m N(t)dt =0

-D

for all M= 0, 1, . -. , p-1 .



Remark : The number of vanishing moments
-

is tightly linked to the support
-

of the waneet and the Durt

Mitters.

FramHambechies
,
1982) .

A made of with p-varishing moments

Must have support at least 2p-1gie,

thete See:H23
is at east up-1 .

&: How are the # of vanishing mounts

related to the DLT Biltes ?

# of 20s & it of low-pass filters.

Proof : Theorem 7. 1 in the book
o
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2eWhich wadets have the shortest

Support for a given of vanishing
moments ?

·Which files have the most of

zexs &# for a give order ?

A Dandelies wavelets/filter







458 CHAPTER 9 Approximations in Bases
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FIGURE 9.2
(a) Original signal f . (b) Each Dirac corresponds to one of the largest M !0.15 N wavelet
coefficients, calculated with a symmlet 4. (c) Nonlinear approximation fM recovered from the
M largest wavelet coefficients shown in (b), ∥ f " fM∥/∥ f ∥!5.1 10"3.



6.2 Wavelet Transform Modulus Maxima 227
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FIGURE 6.7
(a) Intensity variation along one row of the Lena image. (b) Dyadic wavelet transform computed
at all scales 2N!1 "2 j "1, with the quadratic spline wavelet ! #!"$ shown in Figure 5.3.
(c) Modulus maxima of the dyadic wavelet transform.


