Last Tine: Fundamental Mean of Wavelet Analysis Let QELZCR) be a valid scaling Andretion. Then, the filter h [n] = < (e, n) must southesfy (1) $|H(e^{i\omega})|^2 + |H(e^{i(\omega+\pi)})|^2 = 2$ (2) $H(e^{j\circ}) = \sum_{n \in \mathbb{Z}} h [n] = \sqrt{2}$ $\exists min | H(e^{jn}) | > 0.$ $\omega \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ On the other hand, given a filter h[n] Such that H(ein) soutistics (D, D, & 3), the the invest Fourier transform of $\overline{\Phi}(\omega) = \frac{\omega}{\Pi} \frac{H(e^{52-i\omega})}{\overline{\Box}}$ \tilde{c}_{21} $\sqrt{2}$ and is a valid scaling function: e_{x} sts $\mathcal{C}(t) = \frac{1}{N_{2r}} \int_{-\infty}^{\infty} \overline{\mathcal{P}}(\omega) e^{j\omega t} d\omega$

Obs: There is a one-to-one correspondence better scaling functions and low pass £;176-5, Conjugate mirror Filtus $h_0 T_n = h T_n$ Complex Coefficients $\tilde{h}_{1} [m] = (-1)^{1-m} h [m-n]$ ho Enz= ho E-nz $h, Cn3 = \tilde{h}, C-n]$ The two channel FB: Holiz M2 Hol HILZ M2 Hol is PR.

Exer: Determine the delay of the system. $H_{0}(z)$ $H_{0}(z) + H_{1}(z)$ $H_{1}(z) = 2 z^{-L} - delay$ distor tion Holes Holes + Holes + Holes + Holes = Zeiln 200 - periodic $\widetilde{H}_{0}(e^{j\omega}) = \widetilde{H}(e^{j\omega})$ $\widetilde{H}_{1}(e^{j\omega}) = \widetilde{e^{j\omega}} + \widetilde{H}(\widetilde{e^{j(\omega+\pi)}}) = \widetilde{e^{j\omega}} + \widetilde{H}(\widetilde{e^{j(\omega-\pi)}})$ Ho (eir) = H(e-ir) $H_{i}(e^{j\omega}) = e^{j\omega}H(e^{j(\omega+i\pi)})$ \rightarrow H(e in) H(e^{in}) + e^{in} H($e^{i(m+r)}$) e^{in} H($e^{i(m+r)}$) $= \left| H(e^{j\omega}) \right|^{2} + \left| H(e^{j(\omega - \pi)}) \right|^{2}$ = 2 [by the fundamental treater] \implies L=0

Q: Why are we doings any of this? Why not just use PPTS? A: DWTs have a "nicer" frequency-band decomposition, $\frac{fecul!}{x Cn^3} - \frac{1}{12} - x C2n^3 = \gamma Cn^3$ $Y(e^{j\omega}) = \frac{1}{2} \left(X(e^{j\frac{\omega}{2}}) + X(e^{j(\frac{\omega-2\pi}{2})}) \right)$ Suppose ne have a discrete appose a Cu3 with DTPT $+\omega$ $-\Pi$ Ho

 $W_{I^{-1}}$ $+\omega$ w T T 17 1 *−𝔅* TT T T 12 ີ**ω′**=≀ω $\sim \pi$ π H_1 Ho NJ-2 V2-2 $-\omega'=2\omega$ 1 -2a 1 - 2a 2 - 1 - 1 7 R Ţ CTT

Frequery-Band Decomposition of the DWT $V \underset{L}{\sim} coe C - \pi, \pi 7$ $W_{I-1} \approx \omega \in \left[-\pi, -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, \pi\right]$ $V_{I-1} \approx \omega \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $W_{I-2} \approx \omega' \in [-\pi, \pi] \cup [\pi, \pi]$ $\equiv \omega \in \left[-\frac{\pi}{2}, \frac{\pi}{4}\right] \cup \left[\frac{\pi}{2}, \frac{\pi}{2}\right]$ $V_{I-2} \approx \alpha' \in \begin{bmatrix} -\pi \\ 2 \end{bmatrix}, \begin{bmatrix} \pi \\ 2 \end{bmatrix}$ $= \omega \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ $W_{\mathbf{I}-\mathbf{k}} \approx \omega \in \left[-\frac{\pi}{2^{\mathbf{k}+1}}, -\frac{\pi}{2^{\mathbf{k}}}\right] \left[\int_{2^{\mathbf{k}-1}}^{\pi} \int_{2^{\mathbf{k}}}^{\pi} \int_{2^{\mathbf{$ $V_{I-K} \approx \omega \in \left[-\frac{\pi}{2^{\kappa}}, \frac{\pi}{2^{\kappa}}\right]$

Obs: Wowelet spaces are (approximately) bardpass subspaces. Obs: We have a logarithmic (base 2) set of band widths. Remarks: The logarithmic frequency decomp. is similar to the octave decomp. in musical scales and is related to the response characteristics of the human ear, $\bigvee_{1-3} \stackrel{\bigoplus}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{\bigoplus}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{\bigoplus}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{\bigoplus}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{\bigoplus}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{W}{\mathbb{I} \stackrel{W} \stackrel{W}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{W} \stackrel{W}{\mathbb{I}} \stackrel{W}{\mathbb{I}} \stackrel{W}{\mathbb{I} \stackrel{W} \stackrel{W}{\mathbb{I}$ $W_{\mathcal{I}} = V_{\mathcal{I}}$ (T τ ?

Obs: • High - frequery information is capturel in short time instants. · Low - figulary information is captured in long tint instants. Tine - Frequery Tilings ω ω tFrequeny - Domain tTime - Donal ω $\omega_{_}$ Multiscale (DWT) Speet-gram (STFT)

Wave lets: Haar (YG) Elt) \bigcirc \cdot \cdot \cdot \cdot \cdot \cdot J. . Fourier would Cause Gibbs plenorenor ~ / flf) Obs: All wonelet coeffs will be zero except at the jumps. Q: What about the scaling coefficients? A: Only store one number (average at signal). ten Property: So W(t) dt = O (one vanishing -20 (t) dt = O (moment)

Remark: Real-life signals are approximately piecewise polynomial. Q: Can ne have highe-orde warelets? Yes: A: Dan bechies, symmlet, sphre warelets, etc. Def: A wavelet Y(t) is said to have p-vanishing moments it it sortifies $\int_{-\infty}^{\infty} t^{m} \mathcal{U}(t) dt = 0$ $m=O_{j}l, \cdots, p-l.$ for all

Remark: The number of vanishing moments is trynthy linked to the support of the nonelet and the Dut Arlters, Theorm (Don Lechies, 1998): A wavelet & with p-varishings moments Must have support at least 2p-1, i.e., the length of L'Closure $Supp Y = \{ t \in \mathbb{R} : Y(t) \neq 0 \}$ is at least 2p-1. Q: How are the # of vanishing monets related to the DWT filters? A: # af 2005 @ TT of low-pass Billing. Proof: Theorem 2.4 in the book.

Q: Which wavelets have the shortest given # af vanishing Support for Ûţ Monnts? • Which filters have the most # at Zeros Q II for a give order? A: Dandechies wavelets (filter

Here are pictures of some of the scaling functions (N = 2p in the captions below):

Figure 6.1. Daubechies Scaling Functions, $N = 4, 6, 8, \dots, 40$

Here are pictures of some of the wavelet functions (N = 2p in the captions below):

Figure 6.2. Daubechies Wavelets, $N = 4, 6, 8, \dots, 40$

FIGURE 9.2

(a) Original signal f. (b) Each Dirac corresponds to one of the largest M = 0.15 N wavelet coefficients, calculated with a symmlet 4. (c) Nonlinear approximation f_M recovered from the M largest wavelet coefficients shown in (b), $||f - f_M|| / ||f|| = 5.1 \, 10^{-3}$.

FIGURE 6.7

(a) Intensity variation along one row of the Lena image. (b) Dyadic wavelet transform computed at all scales $2N^{-1} \le 2^j \le 1$, with the quadratic spline wavelet $\psi = -\theta'$ shown in Figure 5.3. (c) Modulus maxima of the dyadic wavelet transform.